
MATH2050A Mathematical Analysis I Revision Exercise 2

Suggested Solution of Revision Exercise 2

Question 1. Show by definition that

(a) lim
x→3

x3 − 9

2x2 − 9
= 2, (b) lim

x→1−

x

1− x
=∞.

Solution. .

(a) We need to show that for any ε > 0, there exists δ > 0 such that∣∣∣∣ x3 − 9

2x2 − 9
− 2

∣∣∣∣ < ε, whenever 0 < |x− 3| < δ.

Note that for any x ∈ R,∣∣∣∣ x3 − 9

2x2 − 9
− 2

∣∣∣∣ =

∣∣∣∣x3 − 4x2 + 9

2x2 − 9

∣∣∣∣ =
|x2 − x− 3|
|2x2 − 9|

· |x− 3|.

If |x− 3| < 0.5, we have 2.5 < x < 3.5 and 6.25 < x2 < 12.25. In this case,

−0.25 < x2 − x− 3 < 6.75 and 3.5 < 2x2 − 9 < 15.5.

It follows that ∣∣∣∣ x3 − 9

2x2 − 9
− 2

∣∣∣∣ < 6.75

3.5
· |x− 3| = 135

7
|x− 3|.

Let ε > 0. Take δ = min{0.5, 7ε/135}. Then whenever |x− 3| < δ, we have∣∣∣∣ x3 − 9

2x2 − 9
− 2

∣∣∣∣ < 135

7
|x− 3| < 135

7
δ ≤ ε.

(b) We need to show that for any α ∈ R, there exists δ > 0 such that

x

1− x
> α, whenever 0 < 1− x < δ.

Note that if 0 < 1− x < δ ≤ 1, we have 0 ≤ 1− δ < x < 1. In this case,

x

1− x
>

1− δ
δ
≥ 0.

Let α ∈ R. If α < 0, we can take any 0 < δ ≤ 1. Then whenever 0 < 1− x < δ,

x

1− x
≥ 0 > α.

If α ≥ 0, take δ = 1/(1 + α). Then whenever 0 < 1− x < δ,

x

1− x
>

1− δ
δ

=
1− 1/(1 + α)

1/(1 + α)
= α.

Remark. For the case α ≥ 0, the choice of δ is obtained by solving (1− δ)/δ = α.
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Question 2. Show that the function f(x) = 1/x is uniformly continuous on [1,∞), but it
is not uniformly continuous on (0,∞).

Solution. To show that f is uniformly continuous on [1,∞), it suffice to show that f
satisfies a Lipschitz condition on [1,∞). i.e., there exists K > 0 such that

|f(x)− f(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣ ≤ K|x− y|, whenever x, y ∈ [1,∞).

I can be done by seeing that for any x, y ∈ [1,∞),∣∣∣∣1x − 1

y

∣∣∣∣ =
1

xy
· |x− y| ≤ 1

1 · 1
|x− y| = |x− y|.

(K is taken to be 1 implicitly.) To show that f is not uniformly continuous on (0,∞), we
need to show that there exists ε0 > 0 and two sequences (xn) and (yn) in (0,∞) such that

lim
n→∞

(xn − yn) = 0 and |f(xn)− f(yn)| =
∣∣∣∣ 1

xn
− 1

yn

∣∣∣∣ ≥ ε0, ∀n ∈ N .

Consider the sequences (xn) and (yn) defined by xn = 1/n and yn = 1/(n+ 1). Then

lim
n→∞

(xn − yn) = lim
n→∞

(
1

n
− 1

n+ 1

)
= lim

n→∞

1

n
− lim

n→∞

1

n+ 1
= 0− 0 = 0.

Also, for any n ∈ N, ∣∣∣∣ 1

xn
− 1

yn

∣∣∣∣ = |n− (n+ 1)| = 1.

(ε0 is taken to be 1 implicitly.)

Remark. The Nonuniform Continuity Criteria (c.f. 5.4.3) is applied to show that f is
not uniformly continuous on (0,∞).
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Question 3. Let f : [0, π/2] → R be defined by f(x) = sup{x2, cosx}. Show that f has
an absolute minimum. Moreover, show that if f attains its minimum at x0, then x0 is a
solution to the equation cosx = x2.

Solution. Notice that both x2 and cos x is continuous on [0, π/2]. By Homework 7, the
function f is also continous on [0, π/2]. By the Maximum-Minimum Theorem f has an
absolute minimum. Now suppose f attains its minimum at x0. Notice that x2 and cosx is
strictly increasing and decreasing respectively on [0, π/2].

• For 0 < x < x0, we have x2 < x20 ≤ f(x0) ≤ f(x). Therefore f(x) = cos x.

• For x0 < x < π/2, we have cos x < cosx20 ≤ f(x0) ≤ f(x). Therefore f(x) = x2.

Since f is continuous at x0,

f(x0) = lim
x→x0

f(x) = lim
x→x0−

f(x) = lim
x→x0−

cosx = cosx0.

On the other hand,

f(x0) = lim
x→x0

f(x) = lim
x→x0+

f(x) = lim
x→x0+

x2 = x20.

It follows that cosx0 = x20, as they both equal to f(x0).

Remark. The second part of this question relies on the fact that the function x2 is strictly
increasing on [0, π/2] and the function cosx is strictly decreasing on [0, π/2]. Their
proofs are omitted because x2 and cosx are elementary functions, which are well-studied
before. If these facts are not that trivial, we still need to give proofs.

Question 4. Let f : R → R be a continuous periodic function with period p > 0. i.e.,
f(x+ p) = f(x) for all x ∈ R. Show that

(a) f has an absolute maximum.

(b) f is uniformly continuous on R.

Solution. Observe that for any x ∈ R, there exists (unique) n ∈ Z such that x+np ∈ [0, p).

(a) Consider the continuous function f on [0, p]. By Maximum-Minimum Theorem,
f has an absolute maximum. i.e. there exists x∗ ∈ [0, p] such that

f(x) ≤ f(x∗), ∀x ∈ [0, p].

It suffices to claim that the above inequality also holds for all x ∈ R. By the above
observation, let n ∈ Z be such that x+ np ∈ [0, p). Then by the above inequality,

f(x) = f(x+ np) ≤ f(x∗).
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(b) Consider the continuous function f on [0, 2p]. By Uniform Continuity Theorem,
f is uniformly continuous on [0, 2p]. Let ε > 0. There exists δ′ > 0 such that

|f(x)− f(y)| < ε, whenever |x− y| < δ′ and x, y ∈ [0, 2p]. (1)

Take δ = min{δ′, p} and suppose x, y ∈ R and |x−y| < δ. By the above observation,
let n,m ∈ Z be such that x+ np, y +mp ∈ [0, p). Notice that

|n−m| = |(x+ np)− (y +mp)− (x− y)|
p

≤ |(x+ np)− (y +mp)|+ |x− y|
p

.

Since x+ np, y +mp ∈ [0, p), |(x+ np)− (y +mp)| < p. Also, |x− y| < δ ≤ p. Then

|n−m| < p+ p

p
= 2 =⇒ m = n− 1, n or n+ 1.

• If m = n− 1, then x+ np, y + (m+ 1)p ∈ [0, 2p] and

|(x+ np)− (y + (m+ 1)p)| = |x− y| < δ ≤ δ′.

Hence by (1), |f(x)− f(y)| = |f(x+ np)− f(y + (m+ 1)p)| < ε.

• If m = n, then x+ np, y +mp ∈ [0, 2p] and

|(x+ np)− (y +mp)| = |x− y| < δ ≤ δ′.

Hence by (1), |f(x)− f(y)| = |f(x+ np)− f(y +mp)| < ε.

• If m = n+ 1, then x+ (n+ 1)p, y +mp ∈ [0, 2p] and

|(x+ (n+ 1)p)− (y +mp)| = |x− y| < δ ≤ δ′.

Hence by (1), |f(x)− f(y)| = |f(x+ (n+ 1)p)− f(y +mp)| < ε.

In any cases, we have |f(x)− f(y)| < ε. The result follows.

Remark. Although the observation is clear to be true, its proof required the Well-Ordering
Property on Z. (A bounded below subset of Z has the least element.) Since it is not a main
focus of this problem, the proof is omitted. In part (b), notice that |x − y| < δ does not
implies that |(x + np) − (y + mp)| < δ. Therefore we need to deal with this situation, by
using the uniform continuity on [0, 2p] instead of [0, p].
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Question 5. Let f : R→ R be uniformly continuous on R with f(0) = 0. Prove that there
exists some C > 0 such that

|f(x)| ≤ 1 + C|x|, ∀x ∈ R.

(Hint: You may apply the Well-Ordering Property of N.)

Solution. Since f is uniformly continuous on R, there exists δ > 0 such that

|f(x)− f(y)| < 1, whenever |x− y| < δ.

Let x ∈ R. Consider the set
Sx =

{
n ∈ N : |x| < nδ

}
.

By Archimedean Property, there exists N ∈ N such that

|x|
δ
< N =⇒ |x| < Nδ.

Therefore Sx is a non-empty subset of N. By the Well-Ordering Property of N, Sx has a
least element n0. i.e., (n0 − 1)δ ≤ |x| < n0δ. For each i = 0, 1, 2, ..., n0, define

xi =
i

n0

x.

Then for i = 1, 2, ..., n0,

|xi − xi−1| =
∣∣∣∣ in0

x− i− 1

n0

x

∣∣∣∣ =
1

n0

|x| < δ.

It follows from the triangle inequality and the definition of n0 that

|f(x)| = |f(x)− f(0)|
= |f(xn0)− f(x0)|
≤ |f(xn0)− f(xn0−1)|+ |f(xn0−1)− f(xn0−2)|+ · · ·+ |f(x1)− f(x0)|

=

n0∑
i=1

|f(xi)− f(xi−1)|

<

n0∑
i=1

1

= n0

≤ 1 +
1

δ
|x|

(C is taken to be 1/δ implicitly.)

Remark. The idea is to connect 0 and x by points xi’s with distance less than δ.
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