Suggested Solution of Revision Exercise 2

Question 1. Show by definition that

(a)
$$
\lim_{x \to 3} \frac{x^3 - 9}{2x^2 - 9} = 2
$$
,
 (b) $\lim_{x \to 1} \frac{x}{1 - x} = \infty$.

Solution. .

(a) We need to show that for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$
\left|\frac{x^3 - 9}{2x^2 - 9} - 2\right| < \varepsilon, \quad \text{whenever } 0 < |x - 3| < \delta.
$$

Note that for any $x \in \mathbb{R}$,

$$
\left|\frac{x^3-9}{2x^2-9}-2\right| = \left|\frac{x^3-4x^2+9}{2x^2-9}\right| = \frac{|x^2-x-3|}{|2x^2-9|} \cdot |x-3|.
$$

If $|x-3| < 0.5$, we have $2.5 < x < 3.5$ and $6.25 < x^2 < 12.25$. In this case,

 $-0.25 < x^2 - x - 3 < 6.75$ and $3.5 < 2x^2 - 9 < 15.5$.

It follows that

$$
\left|\frac{x^3-9}{2x^2-9}-2\right| < \frac{6.75}{3.5} \cdot |x-3| = \frac{135}{7}|x-3|.
$$

Let $\varepsilon > 0$. Take $\delta = \min\{0.5, 7\varepsilon/135\}$. Then whenever $|x - 3| < \delta$, we have

$$
\left|\frac{x^3 - 9}{2x^2 - 9} - 2\right| < \frac{135}{7} |x - 3| < \frac{135}{7} \delta \le \varepsilon.
$$

(b) We need to show that for any $\alpha \in \mathbb{R}$, there exists $\delta > 0$ such that

$$
\frac{x}{1-x} > \alpha, \quad \text{whenever } 0 < 1 - x < \delta.
$$

Note that if $0 < 1 - x < \delta \le 1$, we have $0 \le 1 - \delta < x < 1$. In this case,

$$
\frac{x}{1-x} > \frac{1-\delta}{\delta} \ge 0.
$$

Let $\alpha \in \mathbb{R}$. If $\alpha < 0$, we can take any $0 < \delta \leq 1$. Then whenever $0 < 1 - x < \delta$,

$$
\frac{x}{1-x} \ge 0 > \alpha.
$$

If $\alpha \geq 0$, take $\delta = 1/(1 + \alpha)$. Then whenever $0 < 1 - x < \delta$,

$$
\frac{x}{1-x} > \frac{1-\delta}{\delta} = \frac{1-1/(1+\alpha)}{1/(1+\alpha)} = \alpha.
$$

Remark. For the case $\alpha \geq 0$, the choice of δ is obtained by solving $(1 - \delta)/\delta = \alpha$.

Prepared by Ernest Fan 1

Question 2. Show that the function $f(x) = 1/x$ is uniformly continuous on $[1, \infty)$, but it is not uniformly continuous on $(0, \infty)$.

Solution. To show that f is uniformly continuous on $[1,\infty)$, it suffice to show that f satisfies a Lipschitz condition on [1, ∞). i.e., there exists $K > 0$ such that

$$
|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| \le K|x - y|, \quad \text{whenever } x, y \in [1, \infty).
$$

I can be done by seeing that for any $x, y \in [1, \infty)$,

$$
\left|\frac{1}{x} - \frac{1}{y}\right| = \frac{1}{xy} \cdot |x - y| \le \frac{1}{1 \cdot 1} |x - y| = |x - y|.
$$

(K is taken to be 1 implicitly.) To show that f is not uniformly continuous on $(0, \infty)$, we need to show that there exists $\varepsilon_0 > 0$ and two sequences (x_n) and (y_n) in $(0, \infty)$ such that

$$
\lim_{n \to \infty} (x_n - y_n) = 0 \text{ and } |f(x_n) - f(y_n)| = \left| \frac{1}{x_n} - \frac{1}{y_n} \right| \ge \varepsilon_0, \quad \forall n \in \mathbb{N}.
$$

Consider the sequences (x_n) and (y_n) defined by $x_n = 1/n$ and $y_n = 1/(n + 1)$. Then

$$
\lim_{n \to \infty} (x_n - y_n) = \lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{n \to \infty} \frac{1}{n} - \lim_{n \to \infty} \frac{1}{n+1} = 0 - 0 = 0.
$$

Also, for any $n \in \mathbb{N}$,

$$
\left|\frac{1}{x_n} - \frac{1}{y_n}\right| = |n - (n+1)| = 1.
$$

 $(\varepsilon_0$ is taken to be 1 implicitly.)

Remark. The Nonuniform Continuity Criteria (c.f. 5.4.3) is applied to show that f is not uniformly continuous on $(0, \infty)$.

Question 3. Let $f : [0, \pi/2] \to \mathbb{R}$ be defined by $f(x) = \sup\{x^2, \cos x\}$. Show that f has an absolute minimum. Moreover, show that if f attains its minimum at x_0 , then x_0 is a solution to the equation $\cos x = x^2$.

Solution. Notice that both x^2 and cos x is continuous on $[0, \pi/2]$. By **Homework 7**, the function f is also continous on [0, $\pi/2$]. By the **Maximum-Minimum Theorem** f has an absolute minimum. Now suppose f attains its minimum at x_0 . Notice that x^2 and cos x is strictly increasing and decreasing respectively on $[0, \pi/2]$.

- For $0 < x < x_0$, we have $x^2 < x_0^2 \le f(x_0) \le f(x)$. Therefore $f(x) = \cos x$.
- For $x_0 < x < \pi/2$, we have $\cos x < \cos x_0^2 \le f(x_0) \le f(x)$. Therefore $f(x) = x^2$.

Since f is continuous at x_0 ,

$$
f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0-} f(x) = \lim_{x \to x_0-} \cos x = \cos x_0.
$$

On the other hand,

$$
f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0+} f(x) = \lim_{x \to x_0+} x^2 = x_0^2.
$$

It follows that $\cos x_0 = x_0^2$, as they both equal to $f(x_0)$.

Remark. The second part of this question relies on the fact that the function x^2 is strictly increasing on $[0, \pi/2]$ and the function cos x is strictly decreasing on $[0, \pi/2]$. Their proofs are omitted because x^2 and $\cos x$ are elementary functions, which are well-studied before. If these facts are not that trivial, we still need to give proofs.

Question 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous periodic function with period $p > 0$. i.e., $f(x + p) = f(x)$ for all $x \in \mathbb{R}$. Show that

- (a) f has an absolute maximum.
- (b) f is uniformly continuous on \mathbb{R} .

Solution. Observe that for any $x \in \mathbb{R}$, there exists (unique) $n \in \mathbb{Z}$ such that $x + np \in [0, p)$.

(a) Consider the continuous function f on $[0, p]$. By Maximum-Minimum Theorem, f has an absolute maximum. i.e. there exists $x^* \in [0, p]$ such that

$$
f(x) \le f(x^*), \quad \forall x \in [0, p].
$$

It suffices to claim that the above inequality also holds for all $x \in \mathbb{R}$. By the above **observation**, let $n \in \mathbb{Z}$ be such that $x + np \in [0, p)$. Then by the above inequality,

$$
f(x) = f(x + np) \le f(x^*).
$$

(b) Consider the continuous function f on $[0, 2p]$. By Uniform Continuity Theorem, f is uniformly continuous on [0, 2p]. Let $\varepsilon > 0$. There exists $\delta' > 0$ such that

$$
|f(x) - f(y)| < \varepsilon, \quad \text{whenever } |x - y| < \delta' \text{ and } x, y \in [0, 2p]. \tag{1}
$$

Take $\delta = \min\{\delta', p\}$ and suppose $x, y \in \mathbb{R}$ and $|x - y| < \delta$. By the above **observation**, let $n, m \in \mathbb{Z}$ be such that $x + np, y + mp \in [0, p)$. Notice that

$$
|n-m| = \frac{|(x+np) - (y+mp) - (x-y)|}{p} \le \frac{|(x+np) - (y+mp)| + |x-y|}{p}.
$$

Since $x + np, y + mp \in [0, p), |(x + np) - (y + mp)| < p$. Also, $|x - y| < \delta \le p$. Then

$$
|n-m| < \frac{p+p}{p} = 2 \implies m = n-1, n \text{ or } n+1.
$$

• If $m = n - 1$, then $x + np$, $y + (m + 1)p \in [0, 2p]$ and

$$
|(x+np) - (y + (m+1)p)| = |x - y| < \delta \le \delta'.
$$

Hence by (1), $|f(x) - f(y)| = |f(x + np) - f(y + (m + 1)p)| < \varepsilon$.

• If $m = n$, then $x + np$, $y + mp \in [0, 2p]$ and

$$
|(x+np)-(y+mp)|=|x-y|<\delta\leq\delta'.
$$

Hence by (1), $|f(x) - f(y)| = |f(x + np) - f(y + mp)| < \varepsilon$.

• If $m = n + 1$, then $x + (n + 1)p, y + mp \in [0, 2p]$ and

$$
|(x+(n+1)p)-(y+mp)|=|x-y|<\delta\leq\delta'.
$$

Hence by (1), $|f(x) - f(y)| = |f(x + (n+1)p) - f(y + mp)| < \varepsilon$.

In any cases, we have $|f(x) - f(y)| < \varepsilon$. The result follows.

Remark. Although the observation is clear to be true, its proof required the Well-Ordering Property on \mathbb{Z} . (A bounded below subset of \mathbb{Z} has the least element.) Since it is not a main focus of this problem, the proof is omitted. In part (b), notice that $|x - y| < \delta$ does not implies that $|(x + np) - (y + mp)| < \delta$. Therefore we need to deal with this situation, by using the uniform continuity on $[0, 2p]$ instead of $[0, p]$.

Question 5. Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} with $f(0) = 0$. Prove that there exists some $C > 0$ such that

$$
|f(x)| \le 1 + C|x|, \quad \forall x \in \mathbb{R}.
$$

(Hint: You may apply the Well-Ordering Property of N.)

Solution. Since f is uniformly continuous on R, there exists $\delta > 0$ such that

 $|f(x) - f(y)| < 1$, whenever $|x - y| < \delta$.

Let $x \in \mathbb{R}$. Consider the set

$$
S_x = \left\{ n \in \mathbb{N} : |x| < n\delta \right\}.
$$

By Archimedean Property, there exists $N \in \mathbb{N}$ such that

$$
\frac{|x|}{\delta} < N \implies |x| < N\delta.
$$

Therefore S_x is a non-empty subset of N. By the **Well-Ordering Property** of N, S_x has a least element n_0 . i.e., $(n_0 - 1)\delta \le |x| < n_0 \delta$. For each $i = 0, 1, 2, ..., n_0$, define

$$
x_i = \frac{i}{n_0}x.
$$

Then for $i = 1, 2, ..., n_0$,

$$
|x_i - x_{i-1}| = \left| \frac{i}{n_0} x - \frac{i-1}{n_0} x \right| = \frac{1}{n_0} |x| < \delta.
$$

It follows from the triangle inequality and the definition of n_0 that

$$
|f(x)| = |f(x) - f(0)|
$$

\n
$$
= |f(x_{n_0}) - f(x_0)|
$$

\n
$$
\leq |f(x_{n_0}) - f(x_{n_0-1})| + |f(x_{n_0-1}) - f(x_{n_0-2})| + \dots + |f(x_1) - f(x_0)|
$$

\n
$$
= \sum_{i=1}^{n_0} |f(x_i) - f(x_{i-1})|
$$

\n
$$
< \sum_{i=1}^{n_0} 1
$$

\n
$$
= n_0
$$

\n
$$
\leq 1 + \frac{1}{\delta} |x|
$$

(*C* is taken to be $1/\delta$ implicitly.)

Remark. The idea is to connect 0 and x by points x_i 's with distance less than δ .